A global meta‐analysis of yield‐scaled N2O emissions and its mitigation efforts for maize, wheat, and rice

Author:

Yao Zhisheng12ORCID,Guo Haojie12,Wang Yan1,Zhan Yang12,Zhang Tianli1,Wang Rui1,Zheng Xunhua12ORCID,Butterbach‐Bahl Klaus134ORCID

Affiliation:

1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics Chinese Academy of Sciences Beijing P.R. China

2. College of Earth and Planetary Science University of Chinese Academy of Sciences Beijing P.R. China

3. Institute for Meteorology and Climate Research, Atmospheric Environmental Research Karlsruhe Institute of Technology Garmisch‐Partenkirchen Germany

4. Pioneer Center Land‐CRAFT, Department of Agroecology Aarhus University Aarhus C Denmark

Abstract

AbstractMaintaining or even increasing crop yields while reducing nitrous oxide (N2O) emissions is necessary to reconcile food security and climate change, while the metric of yield‐scaled N2O emission (i.e., N2O emissions per unit of crop yield) is at present poorly understood. Here we conducted a global meta‐analysis with more than 6000 observations to explore the variation patterns and controlling factors of yield‐scaled N2O emissions for maize, wheat and rice and associated potential mitigation options. Our results showed that the average yield‐scaled N2O emissions across all available data followed the order wheat (322 g N Mg−1, with the 95% confidence interval [CI]: 301–346) > maize (211 g N Mg−1, CI: 198–225) > rice (153 g N Mg−1, CI: 144–163). Yield‐scaled N2O emissions for individual crops were generally higher in tropical or subtropical zones than in temperate zones, and also showed a trend towards lower intensities from low to high latitudes. This global variation was better explained by climatic and edaphic factors than by N fertilizer management, while their combined effect predicted more than 70% of the variance. Furthermore, our analysis showed a significant decrease in yield‐scaled N2O emissions with increasing N use efficiency or in N2O emissions for production systems with cereal yields >10 Mg ha−1 (maize), 6.6 Mg ha−1 (wheat) or 6.8 Mg ha−1 (rice), respectively. This highlights that N use efficiency indicators can be used as valuable proxies for reconciling trade‐offs between crop production and N2O mitigation. For all three major staple crops, reducing N fertilization by up to 30%, optimizing the timing and placement of fertilizer application or using enhanced‐efficiency N fertilizers significantly reduced yield‐scaled N2O emissions at similar or even higher cereal yields. Our data‐driven assessment provides some key guidance for developing effective and targeted mitigation and adaptation strategies for the sustainable intensification of cereal production.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3