Abstract
Microbes are common inhabitants of wood, but little is known about the relationship between microbial community dynamics during wood discoloration. This study uses simulation experiments to examine the changes in the microbial communities in poplar wood at different succession stages. The composition and structure of the microbial communities changed significantly in different successional stages, with an overarching pattern of bacterial diversity decreasing and fungal diversity increasing from the early to the late successional stages. Nevertheless, succession did not affect the composition of the microbial communities at the phylum level: Proteobacteria and Acidobacteria dominated the bacterial communities, while Ascomycota and Basidiomycota dominated the fungal communities. However, at the genus level, bacterial populations of Sphingomonas and Methylobacterium, and fungal populations of Sphaeropsis were significantly more prevalent in later successional stages. Stochastic assembly processes were dominant in the early successional stages for bacteria and fungi. However, variable selection played a more critical role in the assembly processes as succession proceeded, with bacterial communities evolving towards more deterministic processes and fungal communities towards more stochastic processes. Altogether, our results suggest that bacteria and fungi exhibit different ecological strategies in poplar wood. Understanding those strategies, the resulting changes in community structures over time, and the relationship to the different stages of poplar discoloration, is vital to the biological control of that discoloration.
Funder
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献