Unraveling the relationship between plant species and physicochemical properties on rhizosphere and rhizoplane fungal communities in alpine wet meadows

Author:

Iqbal Awais,Maqsood Ur Rehman Muhammad,Usman Muhammad,Sajjad Wasim,Niu Jiahuan,Degen Abraham Allan,Rafiq Muhammad,Shang Zhanhuan

Abstract

Abstract Background Wet meadows, a type of wetland, are impacted by significant climate fluctuation and human activity, impacting soil microorganisms that play an essential role in ecosystem processes. Understanding the underlying ecological mechanisms and processes of wet meadows depends on the fungal communities associated with the plant roots. We used Illumina MiSeq profiling for amplicon sequencing to determine how environmental factors and elevation affect the fungal communities of the rhizosphere and rhizoplane related to three plant species, Cremanthodium ellisii, Cremanthodium lineare, and Caltha scaposa, in alpine wet meadows. Results The phyla Ascomycota and Basidiomycota dominated the rhizosphere (54.5% and 20.9%) and rhizoplane (51.6% and 36.4%), while the predominant fungal genera in the rhizosphere and rhizoplane were Unclassified fungi, Unclassified Ascomycota, Pseudeurotium, Tetracladium, Vishniacozyma, Rhodotorula, Cadophora, and Penicillium. Mantel test and network analysis revealed that the soil water content (SWC), soil organic carbon (SOC), and total nitrogen (TN) were the primary drivers of fungal communities. However, the influence of microbial biomass C (MBC), pH, microbial biomass N (MBN), and elevation varied. Stochastic assembly processes were dominant in both rhizosphere and rhizoplane fungal communities. FUNGuild functional prediction revealed site-specific variation in the trophic level and guild of plant-root-associated fungal communities. The rhizosphere contained 58.5% saprotrophs, 11.7% pathotrophs, and 12.6% symbiotrophs. In addition, 60.4% of the observed OTUs were arbuscular mycorrhizae, 13.2% were endophytes, 20.9% were ectomycorrhizae, and 1.09% were orchid mycorrhizae. The rhizoplane comprised 51.3% of OTUs linked with saprotrophs, 13.9% with pathotrophs, and 7.92% with symbiotrophs. Moreover, 36.1% of OTUs represented arbuscular mycorrhizae, 25.0% were endophytes, 30.6% were ectomycorrhizae, and 2.77% were ascribed to orchid mycorrhizae in the rhizoplane. The abundance of saprotrophs and pathotrophs in the rhizosphere was highest in C. ellisii at SI and SIII, while symbiotrophs were highest in C. lineare at SIII. Similar variations among the plant species and sites were observed in the fungal functional groups (guilds). Conclusions It was concluded that although root compartments significantly influenced the fungal communities in the rhizosphere and rhizoplane, environmental factors and plant types exhibited distinct effects. This study explains how physicochemical properties, plant species, and sites can alter the overall structure and functional repertoire of fungal communities in alpine wet meadows. Graphical Abstract

Funder

Second Tibetan Plateau Expedition

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

The '111' Programme 2.0

Publisher

Springer Science and Business Media LLC

Subject

Pollution

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3