Exudates of Picea abies, Pinus nigra, and Larix decidua: Chromatographic Comparison and Pro-Migratory Effects on Keratinocytes In Vitro

Author:

Goels Thomas,Eichenauer Elisabeth,Tahir AmmarORCID,Prochaska Paul,Hoeller Franziska,Heiß Elke H.,Glasl SabineORCID

Abstract

Balms and resins of Picea abies, Larix decidua, and Pinus nigra are traditionally used to treat wounds. Three chromatographic techniques differing in separation capacity and technical demands were employed to distinguish among these plant exudates. A TLC method was established for fingerprint comparison, providing a quick overview of a large number of samples at low cost. HPLC-DAD (RP18) and UHPSFC-DAD (Torus 2-Picolylamin), hyphenated to ESI-MS, represented orthogonal chromatographic systems with high separation performance. The developed methods allow for the separation and detection of major and minor constituents belonging to different compound classes (phenyl carboxylic acids, lignans, diterpene resin acids). The qualitative compositions of the diterpene resin acids, the main compounds in the exudates, were comparable in all three genera. Differences were detected in the distribution of hydroxylated diterpene resin acids, pinoresinol, and hydroxycinnamic acids. The three tested chromatographic systems with varying demands on lab equipment offer appropriate tools for the quality assessment of Picea abies, Larix decidua, and Pinus nigra. The extracts were furthermore tested at three different concentrations (10 µg/mL, 3 µg/mL, and 1 µg/mL) for boosted re-epithelialization, a crucial step in the wound-healing process, in an in vitro HaCaT keratinocyte-based scratch assay. Lysophosphatidic acid (LPA, 10 µM) and extracts of several medicinal plants well known for their wound-healing properties (birch, marigold, St. John’s wort, manuka honey) were used as positive controls. Picea abies and Pinus nigra showed concentration dependency; significant activity was measured for Larix decidua at 3 µg/mL.

Funder

Vienna Anniversary Foundation for Higher Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3