Volatile Compounds Governed by Single Recessive Gene Impart Aroma in Sponge Gourd (Luffa cylindrica L. Roem)

Author:

Chaubey Tribhuvan,Sagar VidyaORCID,Singh Ramesh Kumar,Chanotiya Chandan Singh,Pandey Sudhakar,Singh Prabhakar M.ORCID,Karmakar Pradip,Singh Jagdish,Singh Bijendra,Singh Dhananjay Pratap,Pandey Koshlendra Kumar,Behera Tusar KantiORCID

Abstract

As a vegetable crop, sponge gourd is widely consumed worldwide due to its health promoting and nutraceutical value. This study describes genetics of an aromatic genotype VRSG-7-17 and deciphers the genetic control and volatile compound composition of sponge gourd. To study the inheritance of this trait, a cross was made between aromatic light-green-fruited VRSG-7-17 and non-aromatic dark-green-fruited VRSG-194 genotypes. The F1s were found to be non-aromatic and have a green fruit colour. Chi-square (χ2) analysis of backcross and F2 population segregating for aroma suggested that the inheritance of aroma in VRSG-7-17 is governed by a single recessive gene in a simple Mendelian fashion. The SPME–GC/MS analysis of the volatile compounds suggested that the compounds responsible for Basmati rice-like aroma were mainly hexanal, 1-octen-3-ol, 3-octanone and limonene. The aroma persists in the cooked VRSG-7-17 fruits, that did not lose fragrance traits at high temperatures. The inheritance of fruit colour was found to be controlled by a single gene with incomplete dominance. The segregation analysis showed that the aroma and fruit colour were not linked, and they segregated independently. The findings will lead to understanding the inheritance of the aromatic compounds in the sponge gourd and may be utilised in the breeding programmes for developing improved aromatic varieties.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3