Abstract
Studying the mechanisms through which endophytic fungi confer protection to host plants against parasites will contribute toward elucidating the endophytic fungi–plant–pathogen relationship. In this study, we evaluated the effects of endophytic Beauveria bassiana on the antioxidant activity, oxidative stress, and growth of tomatoes infected with the fusarium wilt pathogen, Fusarium oxysporum f. sp. lycopersici (FOL). Tomato seedlings were inoculated with B. bassiana conidia and then contaminated with FOL experimentally. Four treatments (Control [T1], FOL only [T2], B. bassiana only [T3], and B. bassiana and FOL [T4]) were assessed. The plants from the B. bassiana and FOL treatment (T4) were significantly taller (DF = 3, 56; p < 0.001) and produced more leaves and aerial part biomass than those treated with only FOL (T2). Remarkably, plants in the two treatments with FOL (T2 and T4) had the lowest antioxidant activities; meanwhile, plants from the FOL treatment (T2) had the lowest ROS (superoxide and hydroxyl radicals) contents. Broadly, strong positive correlations between ROS and all the plant growth parameters were recorded in this study. While the current results revealed that the endophytic entomopathogen B. bassiana enhanced antioxidant capacity in plants, it did not improve the antioxidant capacity of F. oxysporum-infected plants. It is possible that the pathogenic FOL employed a hiding strategy to evade the host immune response and the antagonistic actions of endophytic B. bassiana. In conclusion, B. bassiana inoculum enhanced the growth of tomatoes infected with FOL, induced higher oxidative stress in both F. oxysporum-infected and -uninfected tomatoes, and improved antioxidant activities in plants inoculated with B. bassiana only.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献