Biological and physiological effects in Bemisia tabaci feeding on tomatoes endophytically colonized by Beauveria bassiana

Author:

Wang Xian1,Yuan Qian1,He Liqiang1,Wang Zhou1,Li Guangyun1,Wang Ziying1,Liu Huai1ORCID

Affiliation:

1. Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection Southwest University Chongqing China

Abstract

AbstractBACKGROUNDEntomopathogenic fungi (EPF) treatment of plants may affect the survival and feeding preferences of herbivorous pests. However, comprehensive studies on the fitness across their entire life cycle, feeding behavior, and physiological changes in herbivores consuming EPF‐treated plants within the tripartite interactions of EPF, plants, and pests are still limited. In this study, we utilized life tables, electrical penetration graph (EPG), and metabolomics to uncover the biological and physiological characteristics of Bemisia tabaci on tomato plants inoculated with Beauveria bassiana through root irrigation.RESULTSOur study indicated that Beauveria bassiana Bb252 can penetrate the entire tissue from the point of inoculation, primarily colonizing the intercellular spaces and vascular tissue. However, this colonization is temporary, lasting no more than 35 days. Moreover, the population fitness and feeding behavior of Bemisia tabaci on tomato plants treated with Beauveria bassiana via root irrigation were significantly affected, showing a substantial 41.4% decrease in net reproductive rate (R0), a notable reduction in watery salivation, and shortened phloem ingestion. Lastly, we observed a significant decrease in hormones and amino acids of whiteflies that fed on Beauveria bassiana‐treated tomato plants by root irrigation.CONCLUSIONSOur results indicated that the endophyte, Beauveria bassiana Bb252, reduced demographic fitness of Bemisia tabaci by altering its hormones and amino acids levels. These findings enhance our understanding of multitrophic interactions in integrated pest management. © 2024 Society of Chemical Industry.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3