A Polarization-Independent Fiber-Optic SPR Sensor

Author:

Li Songquan,Gao Laixu,Zou Changwei,Xie Wei,Wei Yong,Tian Canxin,Wang Zesong,Liang Feng,Xiang Yanxiong,Yang Qian

Abstract

Fiber-optic surface plasmon resonance (SPR) sensors possess the advantages of small size, flexible, allowing for a smaller sample volume, easy to be integrated, and high sensitivity. They have been intensively developed in recent decades. However, the polarizing nature of the surface plasmon waves (SPWs) always hinders the acquisition of SPR spectrum with high signal-noise ratio in wavelength modulation unless a polarizer is employed. The addition of polarizer complicates the system and reduces the degree of compactness. In this work, we propose and demonstrate a novel, polarization-independent fiber-optic SPR sensor based on a BK7 bi-prism with two incident planes orthogonal to each other. In the bi-prism, TM-polarized components of non-polarized incident lights excite SPWs on the first sensing channel, meanwhile the TE components and the remaining TM components are reflected, then the reflected TE components serve as TM components of incident lights for the second sensing channel to excite SPWs. Simulations show the proposed SPR structure permit us to completely eliminate the polarization dependence of the plasmon excitation. Experimental results agree well with the simulations. This kind of devices can be considered an excellent option for development of simple and compact SPR chemical sensors.

Funder

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Guangdong Science and Technology Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3