Small Sample Fiber Full State Diagnosis Based on Fuzzy Clustering and Improved ResNet Network

Author:

Li Xiangqun1ORCID,Liang Jiawen1ORCID,Zhu Jinyu1ORCID,Shi Shengping1ORCID,Ding Fangyu1ORCID,Sun Jianpeng1ORCID,Liu Bo1ORCID

Affiliation:

1. Gannan Power Supply Company of State Grid Gansu Electric Power Supply Company, Hezuo 747000, China

Abstract

The optical time domain reflectometer (OTDR) curve features of communication fibers exhibit subtle differences among their normal, subhealthy, and faulty operating states, making it challenging for existing machine learning-based fault diagnosis algorithms to extract these minute features. In addition, the OTDR curve field fault data are scarce, and data-driven deep neural network that needs a lot of data training cannot meet the requirements. In response to this issue, this paper proposes a communication fiber state diagnosis model based on fuzzy clustering and an improved ResNet. First, the pretrained residual network (ResNet) is modified by removing the classification layer and retaining the feature extraction layers. A global average pooling (GAP) layer is designed as a replacement for the fully connected layer. Second, fuzzy clustering, instead of the softmax classification layer, is employed in ResNet for its characteristic of requiring no subsequent data training. The improved model requires only a small amount of sample training to optimize the parameters of the GAP layer, thereby accommodating state diagnosis in scenarios with limited data availability. During the diagnosis process, the OTDR curves are input into the network, resulting in 512 features outputted in the GAP layer. These features are used to construct a feature vector matrix, and a dynamic clustering graph is formed using fuzzy clustering to realize the fiber state diagnosis. Through on-site data detection and validation, it has been demonstrated that the improved ResNet can effectively identify the full cycle of fiber states.

Funder

State Grid Gansu Electric Power Company Science and Technology Project

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3