Spatiotemporal Variations in the Water Quality of Qionghai Lake, Yunnan–Guizhou Plateau, China

Author:

Ran Jiao,Xiang Rong,Li JieORCID,Xiao Keyan,Zheng BinghuiORCID

Abstract

Although Qionghai Lake is one of the 11 large and medium-sized lakes (lake area > 25 km2) in the Yunnan–Guizhou Plateau (YGP), there has been little research on its water quality, especially over the long term. Herein, meteorological, hydrologic, trophic, and biochemical indices were investigated over the 2011–2020 period to explore the spatiotemporal variations in water quality in Qionghai Lake. The results showed that the CCME-WQI value for Qionghai Lake ranked between marginal and fair during 2011–2020, that the water quality of Qionghai Lake before 2017 was worse than after 2017, and that the water quality of the western part of Qionghai Lake was worse than that of the eastern part. Total nitrogen and total phosphorus were 0.39–0.51 and 0.019–0.027 mg/L during 2011–2020, respectively, and were the main pollution factors in Qionghai Lake. In addition, Qionghai Lake was at the mesotrophic level, but the chlorophyll and trophic state levels (TLI) increased year by year, and the levels in the western area were higher than in the eastern area. Increased anthropogenic activities (industrialization, urbanization, agricultural intensification, etc.) were the main reasons for the poor water quality of Qionghai Lake before 2017, while, after 2017, effective government environmental restoration and management measures improved the water quality. Moreover, the difference in land-use types within the watershed was the main reason for the spatial heterogeneity of water quality in Qionghai Lake. Potassium permanganate index (CODMn) and ammonia nitrogen content index (NH3-N) were not very high, but both showed seasonal variations. Water transparency (SD) in Qionghai Lake was reduced by sediment input and increased algal biomass, while dissolved oxygen (DO) decreased due to thermal stratification. This study is expected to provide a theoretical reference for understanding changes in the water quality and water environmental protection of Qionghai Lake and the YGP.

Funder

Joint Research on Ecological Environmental Protection Restoration of the Yangtze River

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3