Abstract
Lakes are important natural resources closely related to human survival and development. Based on PIE cloud computing platform, the study uses Landsat images and the empirical normalized water body index (ENDWI) to extract water body information of the large lakes in Sichuan province from 2000 to 2020 in the drought and rainy seasons, respectively, and uses the Mann–Kendall test to obtain the long-term trends of their area and climate. On this basis, the evolution of the lakes and their correlation with climate and human activities are analyzed. The results show that (1) In the past 20 years, the area of Lugu Lake, Qionghai Lake, and Luban Reservoir represent a decreasing trend, with Lugu Lake being the most affected. The area of Ma Lake, Three Forks Lake, and Shengzhong Reservoir increased, with the area of Shengzhong Reservoir increasing significantly; (2) During the drought season, all six lakes showed a decreasing trend in precipitation, with the most apparent decreasing trend for Lugu Lake (Slope = −0.8). Only Lugu Lake showed a decreasing trend in precipitation (Slope = −0.15) during the rainy season. The precipitation of Ma Lake, Three Forks Lake, Luban Reservoir and Shengzhong Reservoir showed a significant increasing trend (Slope value was greater than 1.96); (3) The temperatures of the remaining lakes all decreased in the drought season and increased in the rainy season, except that the temperature of Shengzhong Reservoir decreases throughout the year; (4) The area change of plain lakes is greatly affected by human activities, but the area of plateau lakes is are more impacted by climate. Our study improved the accuracy of long-term water body change monitoring with PIE-Engine Studio. Besides, the findings would provide reference for the implementation of sustainable water resources management in Sichuan Province.
Funder
the National Key Research and Development Program of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献