Abstract
Older people face difficulty engaging in conventional rehabilitation exercises for improving physical functions over a long time period due to the passive nature of the conventional exercise, inconvenience, and cost. This study aims to develop and validate a dynamic time warping (DTW) based algorithm for assessing Kinect-enabled home-based physical rehabilitation exercises, in order to support auto-coaching in a virtual gaming environment. A DTW-based algorithm was first applied to compute motion similarity between two time series from an individual user and a virtual coach. We chose eight bone vectors of the human skeleton and body orientation as the input features and proposed a simple but innovative method to further convert the DTW distance to a meaningful performance score in terms of the percentage (0–100%), without training data and experience of experts. The effectiveness of the proposed algorithm was validated through a follow-up experiment with 21 subjects when playing a Tai Chi exergame. Results showed that the algorithm scores had a strong positive linear relationship (r = 0.86) with experts’ ratings and the calibrated algorithm scores were comparable to the gold standard. These findings suggested that the DTW-based algorithm could be effectively used for automatic performance evaluation of an individual when performing home-based rehabilitation exercises.
Funder
National Research Foundation of Korea
High Risk High Return Project of KAIST
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献