Development and Practical Applications of Computational Intelligence Technology

Author:

Matsuzaka Yasunari12,Yashiro Ryu23

Affiliation:

1. Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan

2. Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan

3. Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan

Abstract

Computational intelligence (CI) uses applied computational methods for problem-solving inspired by the behavior of humans and animals. Biological systems are used to construct software to solve complex problems, and one type of such system is an artificial immune system (AIS), which imitates the immune system of a living body. AISs have been used to solve problems that require identification and learning, such as computer virus identification and removal, image identification, and function optimization problems. In the body’s immune system, a wide variety of cells work together to distinguish between the self and non-self and to eliminate the non-self. AISs enable learning and discrimination by imitating part or all of the mechanisms of a living body’s immune system. Certainly, some deep neural networks have exceptional performance that far surpasses that of humans in certain tasks, but to build such a network, a huge amount of data is first required. These networks are used in a wide range of applications, such as extracting knowledge from a large amount of data, learning from past actions, and creating the optimal solution (the optimization problem). A new technique for pre-training natural language processing (NLP) software ver.9.1by using transformers called Bidirectional Encoder Representations (BERT) builds on recent research in pre-training contextual representations, including Semi-Supervised Sequence Learning, Generative Pre-Training, ELMo (Embeddings from Language Models), which is a method for obtaining distributed representations that consider context, and ULMFit (Universal Language Model Fine-Tuning). BERT is a method that can address the issue of the need for large amounts of data, which is inherent in large-scale models, by using pre-learning with unlabeled data. An optimization problem involves “finding a solution that maximizes or minimizes an objective function under given constraints”. In recent years, machine learning approaches that consider pattern recognition as an optimization problem have become popular. This pattern recognition is an operation that associates patterns observed as spatial and temporal changes in signals with classes to which they belong. It involves identifying and retrieving predetermined features and rules from data; however, the features and rules here are not logical information, but are found in images, sounds, etc. Therefore, pattern recognition is generally conducted by supervised learning. Based on a new theory that deals with the process by which the immune system learns from past infection experiences, the clonal selection of immune cells can be viewed as a learning rule of reinforcement learning.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3