Capacitive Properties of Ferrimagnetic NiFe2O4-Conductive Polypyrrole Nanocomposites

Author:

MacDonald Michael1,Zhitomirsky Igor1ORCID

Affiliation:

1. Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada

Abstract

This investigation addresses increasing interest in advanced composite materials, combining capacitive properties and spontaneous magnetization for energy storage applications in supercapacitors. The capacitive properties of ferrimagnetic NiFe2O4 (NFO) spinel nanoparticles with magnetization of 30 emu g−1 were enhanced using high-energy ball-milling and the use of advanced dispersant, which facilitated charge transfer. NFO electrodes with an active mass of 40 mg cm−2 showed a capacitance of 1.46 F cm−2 in 0.5 M Na2SO4 electrolyte in a negative potential range. The charging mechanism in the negative potential range in Na2SO4 electrolyte was proposed. NFO was combined with conductive polypyrrole polymer for the fabrication of composites. The analysis of the capacitive behavior of the composites using cyclic voltammetry, chronopotentiometry and impedance spectroscopy at different electrode potentials revealed synergy of contributions of NFO and PPy. The highest capacitance of 6.64 F cm−2 was obtained from cyclic voltammetry data. The capacitance, impedance, and magnetic properties can be varied by variation of electrode composition. Composite electrodes are promising for application in anodes of asymmetric magnetic supercapacitors for energy storage and magnetically enhanced capacitive water purification devices.

Funder

the Natural Sciences and Engineering Research Council of Canada

CRC program

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3