Ultrasonic-Assisted Electrodeposition of Mn-Doped NiCo2O4 for Enhanced Photodegradation of Methyl Red, Hydrogen Production, and Supercapacitor Applications

Author:

Lee Kuan-Ching1,Tiong Timm Joyce1,Pan Guan-Ting2ORCID,Yang Thomas Chung-Kuang3ORCID,Uma Kasimayan4,Tseng Zong-Liang4ORCID,Nikoloski Aleksandar N.2ORCID,Huang Chao-Ming5ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, University of Nottingham, Broga Road, Semenyih 43500, Selangor Darul Ehsan, Malaysia

2. College of Science, Health, Engineering & Education, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia

3. Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan

4. Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City 24301, Taiwan

5. Green Energy Technology Research Center, Department of Advanced Applied Materials Engineering, Kun Shan University, No. 195, Kunda Rd., Yongkang Dist., Tainan 710303, Taiwan

Abstract

This paper presents a novel ultrasonic-assisted electrodeposition process of Mn-doped NiCo2O4 onto a commercial nickel foam in a neutral electroplating bath (pH = 7.0) under an ultrasonic power of 1.2 V and 100 W. Different sample properties were studied based on their crystallinity through X-ray diffraction (XRD), morphology was studied through scanning electron microscopy (SEM), and photodegradation was studied through ultraviolet–visible (UV–Vis) spectrophotometry. Based on the XRD results, the dominant crystallite phase obtained was shown to be a pure single NiCo2O4 phase. The optical properties of the photocatalytic film showed a range of energy band gaps between 1.72 and 1.73 eV from the absorption spectrum. The surface hydroxyl groups on the catalytic surface of the Mn-doped NiCo2O4 thin films showed significant improvements in removing methyl red via photodegradation, achieving 88% degradation in 60 min, which was approximately 1.6 times higher than that of pure NiCo2O4 thin films. The maximum hydrogen rate of the composite films under 100 mW/cm2 illumination was 38 μmol/cm2 with a +3.5 V external potential. The electrochemical performance test also showed a high capacity retention rate (96% after 5000 charge–discharge cycles), high capacity (260 Fg−1), and low intrinsic resistance (0.8 Ω). This work concludes that the Mn-doped NiCo2O4 hybrid with oxygen-poor conditions (oxygen vacancies) is a promising composite electrode candidate for methyl red removal, hydrogen evolution, and high-performance hybrid supercapacitor applications.

Funder

National Science and Technology Council (NSTC) of Taiwan

Core Facility Center of National Cheng Kung University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3