Abstract
Discrete event system specification (DEVS) has been widely used in event-driven simulations for sensor-driven Internet of things (IoT) applications, such as monitoring the spread of fire disaster. Event-driven models for IoT sensor nodes and their communication is described in DEVS and they have to be integrated with continuous models of fire-spreading dynamics so that the hybrid system modeling and simulation approach have to be considered for both continuous behavior of fire-spreading and event-driven communications by large-scale IoT sensor devices. The hybrid-integrated modelling and simulation for fire-spreading in wide area and large-scale IoT devices result in more complex model evaluation, including simulation time synchronization, so that simulation acceleration is important by considering scalability in large-scale IoT-driven applications that sense fire-spreading. In this study, we proposed a scalable simulation acceleration of a DEVS-based hybrid system using heterogeneous architecture based on multi-cores and graphic processing units (GPUs). We evaluated the power consumption comparison of the proposed accelerated-simulation approach in terms of the composition of the event-driven IoT models and continuous fire-spreading models, which are tightly described in differential equations across a large number of cellular models. The demonstrated result shows that the full utilization of CPU-GPU integrated computing resources, on which event-driven models and continuous models are efficiently deployed and optimally distributed, could enable an advantage for high-performance simulation speedup in terms of execution time, although more power consumption is required, but the total energy consumption could be reduced due to fast simulation time.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献