Accelerated DEVS Simulation Using Collaborative Computation on Multi-Cores and GPUs for Fire-Spreading IoT Sensing Applications

Author:

Kim Seongseop,Cho Jeonghun,Park DaejinORCID

Abstract

Discrete event system specification (DEVS) has been widely used in event-driven simulations for sensor-driven Internet of things (IoT) applications, such as monitoring the spread of fire disaster. Event-driven models for IoT sensor nodes and their communication is described in DEVS and they have to be integrated with continuous models of fire-spreading dynamics so that the hybrid system modeling and simulation approach have to be considered for both continuous behavior of fire-spreading and event-driven communications by large-scale IoT sensor devices. The hybrid-integrated modelling and simulation for fire-spreading in wide area and large-scale IoT devices result in more complex model evaluation, including simulation time synchronization, so that simulation acceleration is important by considering scalability in large-scale IoT-driven applications that sense fire-spreading. In this study, we proposed a scalable simulation acceleration of a DEVS-based hybrid system using heterogeneous architecture based on multi-cores and graphic processing units (GPUs). We evaluated the power consumption comparison of the proposed accelerated-simulation approach in terms of the composition of the event-driven IoT models and continuous fire-spreading models, which are tightly described in differential equations across a large number of cellular models. The demonstrated result shows that the full utilization of CPU-GPU integrated computing resources, on which event-driven models and continuous models are efficiently deployed and optimally distributed, could enable an advantage for high-performance simulation speedup in terms of execution time, although more power consumption is required, but the total energy consumption could be reduced due to fast simulation time.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A DEVS-Based Methodology for Simulation and Model-Driven Development of IoT;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

2. Speed Optimization in DEVS-Based Simulations: A Memoization Approach;Applied Sciences;2023-12-04

3. Accelerated on-Chip Algorithm Based on Semantic Region-Based Partial Difference Detection for LiDAR-Vision Depth Data Transmission Reduction in Lightweight Controller Systems of Autonomous Vehicle;2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2021-12

4. GPU-Based Embedded Intelligence Architectures and Applications;Electronics;2021-04-16

5. Distributed IoT monitoring model using multi-core sensing function integration;Journal of Intelligent & Fuzzy Systems;2021-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3