Speed Optimization in DEVS-Based Simulations: A Memoization Approach

Author:

Kwon Bo Seung1,Han Young Shin2,Lee Jong Sik1

Affiliation:

1. Department of Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

2. Frontier College, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea

Abstract

The DEVS model, designed for general discrete event simulation, explores the event status and time advance of all DEVS atomic models deployed at the time of the simulation, and then performs the scheduled simulation step. Each simulation step is accompanied by a re-exploration the event status and time advance, which is needed for maintaining the casual order of the entire model. It is time consuming to simulate a large-scale DEVS model. In a similar vein, attempts to perform an HDL simulation in a DEVS space increase simulation costs by incurring repeated search costs for model transitions. In this study, we performed a statistical analysis of engine behavior to improve simulation speed and we proposed a DP-based memoization technique for the coupled model. Through our method, we can expect significant performance improvements that range statistically from 7.4 to 11.7 times.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3