Abstract
Stall, a complex phenomenon related to flow separation, is difficult to be predicted accurately. The motivation of the present study is to propose an approach to improve the simulation accuracy of Reynolds Averaged Navier–Stokes equations (RANS) for wind turbines in stall. The approach is implemented in three steps in simulations of the S809 airfoil and the NREL (National Renewable Energy Laboratory) Phase VI rotor. The similarity between airfoil and rotor simulations is firstly investigated. It is found that the primary reason for the inaccuracy of rotor simulation is not the rotational effect or the 3-D effect, but the turbulence-related problem that already exists in airfoil simulation. Secondly, a coefficient of the SST turbulence model is calibrated in airfoil simulation, ensuring the onset and development of the light stall are predicted accurately. The lift of the airfoil in the light stall, which was overestimated about 30%, is reduced to a level consistent with experimental data. Thirdly, the calibrated coefficient is applied to rotor simulation. That makes the flow patterns on the blade properly simulated and the pressure distribution of the blade, as well as the torque of the rotor, are predicted more accurately. The relative error of the predicted maximum torque is reduced from 34.4% to 3.2%. Furthermore, the procedure of calibration is applied to the MEXICO (Model Experiments in Controlled Conditions) rotor, and the predicted pressure distributions over blade sections are better than the CFD (Computational Fluid Dynamics) results from the Mexnext project. In essence, the present study provides an approach for calibrating rotor simulation using airfoil experimental data, which enhances the potential of RANS in accurate simulation of the wind turbine aerodynamic performance.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献