On the extension of kωSST corrections to predict flow separation on thick airfoils with leading‐edge roughness

Author:

Gutierrez Ruben1ORCID,Zamponi Riccardo23ORCID,Ragni Daniele2ORCID,Llorente Elena1ORCID,Aranguren Patricia4

Affiliation:

1. Aerodynamics Blade Engineering Department in Nordex SE Sarriguren Spain

2. Department of Flow Physics and Technology, Faculty of Aerospace Engineering Delft University of Technology Delft The Netherlands

3. Department of Environmental and Applied Fluid Dynamics von Karman Institute for Fluid Dynamics Sint‐Genesius‐Rode Belgium

4. Engineering Department Public University of Navarre Pamplona Spain

Abstract

AbstractModern wind turbines employ thick airfoils in the outer region of the blade with strong adverse pressure gradients and high sensitivity to flow separation, which can be anticipated by leading‐edge roughness. However, Reynolds average Navier‐Stokes simulations currently overpredict the Reynolds shear stresses near the surface, and the flow separation is not correctly predicted. Hence, these methods are not representative enough to optimize the blade design to avoid flow separation, which becomes relevant for rough blades. While several eddy‐viscosity corrections in the turbulence model have been previously studied to predict flow separation over smooth airfoils, the present study aims to extend their applicability to airfoils with leading‐edge roughness. Two corrections, whose effect on flow physics has not been empirically quantified, are addressed. Particle image velocimetry measurements have been performed on a 30% thick airfoil to quantify the impact of these corrections. The reduction of the eddy viscosity introduced by the corrections leads to a shift of the peak location of the Reynolds shear stresses away from the surface, which, in turn, promotes flow separation and improves the prediction of the mean velocity and the pressure‐coefficient distribution. Besides, the ratio between the main turbulent shear stress and turbulent kinetic energy is demonstrated to be lower than the standard value used in the turbulence model at the boundary‐layer outer edge. Adjusting this ratio for an angle of attack of 0° decreases the error on the predicted lift and drag coefficients from 75% to 3% and from 58% to 39%, respectively.

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3