Wastewater Treatment in the Dairy Industry from Classical Treatment to Promising Technologies: An Overview

Author:

Al-Tayawi Aws N.12ORCID,Sisay Elias Jigar3ORCID,Beszédes Sándor3ORCID,Kertész Szabolcs3ORCID

Affiliation:

1. Doctoral School of Environmental Sciences, University of Szeged, Tisza Lajos krt. 103, H-6725 Szeged, Hungary

2. Faculty of Environmental Science and Technology, University of Mosul, Al-Majmoa’a Street, Mosul 41002, Iraq

3. Department of Biosystems Engineering, Faculty of Engineering, University of Szeged, Moszkvai krt. 9, H-6725 Szeged, Hungary

Abstract

Water pollution caused by population growth and human activities is a critical problem exacerbated by limited freshwater resources and increasing water demands. Various sectors contribute to water pollution, with the dairy industry being a significant contributor due to the high concentrations of harmful contaminants in dairy wastewater. Traditional treatment methods have been employed, but they have limitations in terms of effectiveness, cost, and environmental impact. In recent years, membrane separation technology (MST) has emerged as a promising alternative for treating dairy wastewater. Membrane processes offer efficient separation, concentration, and purification of dairy wastewater, with benefits such as reduced process steps, minimal impact on product quality, operational flexibility, and lower energy consumption. However, membrane fouling and concentration polarization present major challenges associated with this technique. Therefore, strategies have been implemented to mitigate these phenomena, including pre-treatment prior to MST, coagulation, and adsorption. Recently, 3D printing technology has gained prominence as one of the latest and most notable advancements for addressing these issues. This comprehensive review examines the drawbacks and benefits of conventional methods employed in dairy wastewater treatment and explores the utilization of membrane technology as an alternative to these approaches. Additionally, the latest technologies implemented to mitigate or alleviate the limitations of membrane technology are discussed.

Funder

National Research, Development and Innovation Office

János Bolyai Research Scholarship of the Hungarian Academy of Sciences

New National Excellence Program of the Ministry for Culture and Innovation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3