Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels

Author:

Barjas Qaswal AbdallahORCID

Abstract

Magnesium ions have many cellular actions including the suppression of the excitability of neurons; however, the depolarization effect of magnesium ions seems to be contradictory. Thus several hypotheses have aimed to explain this effect. In this study, a quantum mechanical approach is used to explain the depolarization action of magnesium. The model of quantum tunneling of magnesium ions through the closed sodium voltage-gated channels was adopted to calculate the quantum conductance of magnesium ions, and a modified version of Goldman–Hodgkin–Katz equation was used to determine whether this quantum conductance was significant in affecting the resting membrane potential of neurons. Accordingly, it was found that extracellular magnesium ions can exhibit a depolarization effect on membrane potential, and the degree of this depolarization depends on the tunneling probability, the channels’ selectivity to magnesium ions, the channels’ density in the neuronal membrane, and the extracellular magnesium concentration. In addition, extracellular magnesium ions achieve a quantum conductance much higher than intracellular ones because they have a higher kinetic energy. This study aims to identify the mechanism of the depolarization action of magnesium because this may help in offering better therapeutic solutions for fetal neuroprotection and in stabilizing the mood of bipolar patients.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3