SD-VIS: A Fast and Accurate Semi-Direct Monocular Visual-Inertial Simultaneous Localization and Mapping (SLAM)

Author:

Liu Quanpan,Wang Zhengjie,Wang Huan

Abstract

In practical applications, how to achieve a perfect balance between high accuracy and computational efficiency can be the main challenge for simultaneous localization and mapping (SLAM). To solve this challenge, we propose SD-VIS, a novel fast and accurate semi-direct visual-inertial SLAM framework, which can estimate camera motion and structure of surrounding sparse scenes. In the initialization procedure, we align the pre-integrated IMU measurements and visual images and calibrate out the metric scale, initial velocity, gravity vector, and gyroscope bias by using multiple view geometry (MVG) theory based on the feature-based method. At the front-end, keyframes are tracked by feature-based method and used for back-end optimization and loop closure detection, while non-keyframes are utilized for fast-tracking by direct method. This strategy makes the system not only have the better real-time performance of direct method, but also have high accuracy and loop closing detection ability based on feature-based method. At the back-end, we propose a sliding window-based tightly-coupled optimization framework, which can get more accurate state estimation by minimizing the visual and IMU measurement errors. In order to limit the computational complexity, we adopt the marginalization strategy to fix the number of keyframes in the sliding window. Experimental evaluation on EuRoC dataset demonstrates the feasibility and superior real-time performance of SD-VIS. Compared with state-of-the-art SLAM systems, we can achieve a better balance between accuracy and speed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3