Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers

Author:

Choi JungyeonORCID,Knarr Brian A.ORCID,Gwon Yeongjin,Youn Jong-Hoon

Abstract

Due to a ship’s extreme motion, there is a risk of injuries and accidents as people may become unbalanced and be injured or fall from the ship. Thus, individuals must adjust their movements when walking in an unstable environment to avoid falling or losing balance. A person’s ability to control their center of mass (COM) during lateral motion is critical to maintaining balance when walking. Dynamic balancing is also crucial to maintain stability while walking. The margin of stability (MOS) is used to define this dynamic balancing. This study aimed to develop a model for predicting balance control and stability in walking on ships by estimating the peak COM excursion and MOS variability using accelerometers. We recruited 30 healthy individuals for this study. During the experiment, participants walked for two minutes at self-selected speeds, and we used a computer-assisted rehabilitation environment (CAREN) system to simulate the roll motion. The proposed prediction models in this study successfully predicted the peak COM excursion and MOS variability. This study may be used to protect and save seafarers or passengers by assessing the risk of balance loss.

Funder

Office of Research and Creative Activity (ORCA) of the University of Nebraska at Omaha

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Effects of Motion at Sea on Crew Performance: A Survey

2. State of the Art of Human Factors Technologies for Ships and Ocean Engineering;Kim;J. Ergonom. Soci. Korea,2001

3. Man Overboard Detecting Systems Based on Wireless Technology;Örtlund;Bachelor’s Thesis,2018

4. Surveillance and Prevention of Occupational Injuries in Alaska: A Decade of Progress, 1990–1999;Conway,2002

5. Developmental Plan of Man-Overboard Alert Devices of Small Fishing Vessels: A Study;Kim;J. Nav. Port Res.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3