Enhanced Wear Resistance in Carbon Nanotube-Filled Bio-Epoxy Composites: A Comprehensive Analysis via Scanning Electron Microscopy and Atomic Force Microscopy

Author:

Hiremath Pavan1,Ranjan Rakesh2ORCID,DeSouza Vir1,Bhat Ritesh1,Patil Santosh3,Maddodi Balakrishna4,Shivamurthy B.1,Perez Teresa Castillo5,Naik Nithesh1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

2. Department of Information Technology, ABES Engineering College, Ghaziabad 201009, Uttar Pradesh, India

3. Department of Mechanical Engineering, School of Automobile, Mechanical & Mechatronics Engineering, Dehmi Kalan, Jaipur 303007, Rajasthan, India

4. Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India

5. Higher Technical School of Aeronautical and Space Engineering (Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio), Universidad Politécnica de Madrid, Pl. del Cardenal Cisneros, 3, 28040 Madrid, Spain

Abstract

This investigation focuses on the wear resistance and surface morphology of multi-walled carbon nanotube (MWCNT)-filled bio-based epoxy composites. This study examines the impact of different MWCNT concentrations (0 Wt.%, 0.25 Wt.%, 0.50 Wt.%, and 0.75 Wt.%) on the wear properties of these composites. Techniques such as scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized for comprehensive surface characterization. The results demonstrated a direct correlation between the MWCNT content and the wear resistance of the composites, which were corroborated by robust statistical analysis. Furthermore, SEM and AFM observations disclosed incremental enhancements in both wear resistance and surface quality as the MWCNT concentration increased. This research not only augments the understanding of wear mechanisms in bio-based epoxy composites but also aligns with the burgeoning focus on sustainable materials.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3