Effectiveness of Nanosilica on Enhancing the Mechanical and Microstructure Properties of Kenaf/Carbon Fiber-Reinforced Epoxy-Based Nanocomposites

Author:

Ponnusamy Muruganantham1ORCID,Natrayan L.2ORCID,Kaliappan S.3,Velmurugan G.4ORCID,Thanappan Subash5ORCID

Affiliation:

1. Indian Institute of Information Technology, Kalyani, Webel IT Park, Kalyani, West Bengal 741235, India

2. Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu 602105, India

3. Department of Mechanical Engineering, Velammal Institute of Technology, Chennai, Tamil Nadu, India

4. Institute of Agricultural Engineering, Saveetha School of Engineering, SIMATS, 602 105, Chennai, Tamil Nadu, India

5. Department of Civil Engineering, Ambo University, Ambo, Ethiopia

Abstract

With an ultrasonic frequency of 15 kHz and an 850 W power capacity, the effects of nanosilica particle inclusion on the tensile, flexural, and impact properties of woven fiber-reinforced kenaf/carbon fiber/epoxy hybrid composites were explored experimentally. The nanoparticles were dispersed uniformly in the epoxy using an ultrasonic probe. Test samples were made according to ASTM requirements for three distinct weight compositions of nanosilica particles (1, 1.5, and 2 wt%). The composites were made utilizing the compression moulding process with the following parameters: (i) weight ratio of nanosilica, (ii) length of kenaf fibers, and (iii) number of carbon fiber layers to achieve the objectives above. According to unmodified samples, with a nanosilica concentration of 1.5 wt%, tensile strength improved by 31%, flexural strength increased by 42.36%, and impact strength increased by 22.65%. It was established that the interaction of micro silica particles with epoxy and fiber, which improved interfacial tension, had a substantial impact on mechanical and water retention capabilities. The 1.5 wt% nanosilica inclusion absorbs less moisture than the 1 and 2 wt% silica composites. A scanning electron microscope was used to examine the fractured surface of the tested nanocomposites.

Funder

Ambo University

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3