Abstract
This work focused on the development of ultra-strong knitted fabrics for personal protective equipment used for protection against mechanical damages. Such knits have to have enhanced mechanical strength properties, which strongly depend on knitting pattern and structural characteristics. Six variants of weft knitted structures were developed and knitted from ultra-high molecular weight polyethylene and additional elastomeric component. The elastomeric component was used to increase the elasticity and toughness of knits; however, it had a high influence on mechanical properties, as well. The performed mechanical tests allowed us to identify dependence of mechanical properties, such as breaking force and elongation at break and resistance to abrasion, tearing, cutting and puncture, on architecture and structural parameters of the knits. Obtained results demonstrate that elastomeric component has high influence on mechanical properties knits and can change the principal mechanical behaviour of knits.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献