Optical Element Surface Defect Size Recognition Based on Decision Regression Tree

Author:

Lou Weimin,Cao Pin,Zhang Danhui,Yang Yongying

Abstract

Defect size recognition is significant to the evaluation of optical element surface quality. Currently, it’s mainly achieved by the conventional image process, such as threshold segmentation. However, as the defect size gradually approaches the diffraction limit of the imaging system, the defect gray distribution changes from bimodal to unimodal, which makes it difficult to be accurately recognized. In this paper, an electromagnetic simulation model of the microscopic scattering dark-field imaging (MSDI) system is built based on the finite-difference time-domain (FDTD) method to research the defect imaging mechanism. The point spread function (PSF) of our MSDI system is measured to revise the far-field simulation light intensity distribution, and the mean value of the distance between three groups of feature points, whose intensity is 0.75, 0.5, and 0.25 of the light intensity distribution peak value, is taken as the feature parameter of the light intensity distribution. To obtain the defect size, the decision regression tree (DRT) is proposed to get the relationship between the feature parameter and the defect size. Besides, some scratches samples are made to verify the validity of the DRT. The results show the relative error of DRT is within 10%, which is better than the threshold segmentation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3