Estimating the Heat Capacity of Non-Newtonian Ionanofluid Systems Using ANN, ANFIS, and SGB Tree Algorithms

Author:

Daneshfar RezaORCID,Bemani Amin,Hadipoor Masoud,Sharifpur Mohsen,Ali Hafiz Muhammad,Mahariq IbrahimORCID,Abdeljawad ThabetORCID

Abstract

This work investigated the capability of multilayer perceptron artificial neural network (MLP–ANN), stochastic gradient boosting (SGB) tree, radial basis function artificial neural network (RBF–ANN), and adaptive neuro-fuzzy inference system (ANFIS) models to determine the heat capacity (Cp) of ionanofluids in terms of the nanoparticle concentration (x) and the critical temperature (Tc), operational temperature (T), acentric factor (ω), and molecular weight (Mw) of pure ionic liquids (ILs). To this end, a comprehensive database of literature reviews was searched. The results of the SGB model were more satisfactory than the other models. Furthermore, an analysis was done to determine the outlying bad data points. It showed that most of the experimental data points were located in a reliable zone for the development of the model. The mean squared error and R2 were 0.00249 and 0.987, 0.0132 and 0.9434, 0.0320 and 0.8754, and 0.0201 and 0.9204 for the SGB, MLP–ANN, ANFIS, and RBF–ANN, respectively. According to this study, the ability of SGB for estimating the Cp of ionanofluids was shown to be greater than other models. By eliminating the need for conducting costly and time-consuming experiments, the SGB strategy showed its superiority compared with experimental measurements. Furthermore, the SGB displayed great generalizability because of the stochastic element. Therefore, it can be highly applicable to unseen conditions. Furthermore, it can help chemical engineers and chemists by providing a model with low parameters that yields satisfactory results for estimating the Cp of ionanofluids. Additionally, the sensitivity analysis showed that Cp is directly related to T, Mw, and Tc, and has an inverse relation with ω and x. Mw and Tc had the highest impact and ω had the lowest impact on Cp.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3