Precision Analysis and Error Compensation of a Telescope Truss Structure Based on Robotics

Author:

Wang Rui,Wang Fuguo,Cao Yuyan,Wang Honghao,Sun Xueqian,Liu Fuhe

Abstract

We propose a new secondary mirror support structure assisted by multi-robotics to improve the observation performance of vehicle-mobile telescope systems. A mathematical model of the displacement at the end of the robotic and the variation of telescope pitch angle is established, then the posture of the robotic is optimized by the Jacobian matrix iteration inverse kinematic problem method. Based on the new support structure, a high-order sensitivity matrix is proposed to establish the mapping relationship between the robotic misalignment and the Zernike coefficient, with the accuracy verified via the Monte Carlo method. The method of adjusting the secondary mirror to compensate the aberration caused by the primary mirror is proposed, and the relationship between the primary mirror surface error and the system error is established under different pitch angles before and after compensation. The experiment and simulation results showed that the adjustment calculated by the high-order sensitivity matrix method can effectively compensate for the misalignment caused by the robotics and the primary mirror surface error to a certain degree. After multiple iterations, the root mean square of the wavefront aberration was better than λ/15. This conclusion provides an engineering application reference value for the secondary mirror support and aberration correction technology of the vehicle telescope system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides;Sotiris;Light Sci. Appl.,2018

2. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing;Robert;Light Sci. Appl.,2014

3. New design for highly durable infrared-reflective coatings

4. Computer-aided Alignment of off-axis three-mirror imaging spectrometer system;Gong;Proc. SPIE,2013

5. The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance;Will;Astron. Astrophys.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical Pupil Shift Correction Method for Large Ground-Based Optical Telescopes;Applied Sciences;2023-12-12

2. Design and evaluation of an active secondary mirror positioning system for a small telescope;Journal of Astronomical Telescopes, Instruments, and Systems;2022-06-22

3. A Hybrid Robot Kinematics Modeling and Trajectory Planning;Lecture Notes in Electrical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3