UWB Indoor Localization Using Deep Learning LSTM Networks

Author:

Poulose AlwinORCID,Han Dong SeogORCID

Abstract

Localization using ultra-wide band (UWB) signals gives accurate position results for indoor localization. The penetrating characteristics of UWB pulses reduce the multipath effects and identify the user position with precise accuracy. In UWB-based localization, the localization accuracy depends on the distance estimation between anchor nodes (ANs) and the UWB tag based on the time of arrival (TOA) of UWB pulses. The TOA errors in the UWB system, reduce the distance estimation accuracy from ANs to the UWB tag and adds the localization error to the system. The position accuracy of a UWB system also depends on the line of sight (LOS) conditions between the UWB anchors and tag, and the computational complexity of localization algorithms used in the UWB system. To overcome these UWB system challenges for indoor localization, we propose a deep learning approach for UWB localization. The proposed deep learning model uses a long short-term memory (LSTM) network for predicting the user position. The proposed LSTM model receives the distance values from TOA-distance model of the UWB system and predicts the current user position. The performance of the proposed LSTM model-based UWB localization system is analyzed in terms of learning rate, optimizer, loss function, batch size, number of hidden nodes, timesteps, and we also compared the mean localization accuracy of the system with different deep learning models and conventional UWB localization approaches. The simulation results show that the proposed UWB localization approach achieved a 7 cm mean localization error as compared to conventional UWB localization approaches.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3