Abstract
As a typical non-deterministic polynomial (NP)-hard combinatorial optimization problem, the hybrid flow shop scheduling problem (HFSSP) is known to be a very common layout in real-life manufacturing scenarios. Even though many metaheuristic approaches have been presented for the HFSSP with makespan criterion, there are limitations of the metaheuristic method in accuracy, efficiency, and adaptability. To address this challenge, an improved SP-MCTS (single-player Monte-Carlo tree search)-based scheduling is proposed for the hybrid flow shop to minimize the makespan considering the multi-constraint. Meanwhile, the Markov decision process (MDP) is applied to transform the HFSSP into the problem of shortest time branch path. The improvement of the algorithm includes the selection policy blending standard deviation, the single-branch expansion strategy and the 4-Rule policy simulation. Based on this improved algorithm, it could accurately locate high-potential branches, economize the resource of the computer and quickly optimize the solution. Then, the parameter combination is introduced to trade off the selection and simulation with the intention of balancing the exploitation and exploration in the search process. Finally, through the analysis of the calculated results, the validity of improved SP-MCTS (ISP-MCTS) for solving the benchmarks is proven, and the ISP-MCTS performs better than the other algorithms in solving large-scale problems.
Funder
National Science and Technology Major Project of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献