Microstructure Evolution and Fretting Wear Mechanisms of Steels Undergoing Oscillatory Sliding Contact in Dry Atmosphere

Author:

Maich Alyssa A.1,Gronsky Ronald1,Komvopoulos Kyriakos2ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

2. Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

Abstract

Variations in the microstructure and the dominant fretting wear mechanisms of carbon steel alloy in oscillatory sliding contact against stainless steel in a dry atmosphere were evaluated by various mechanical testing and microanalytical methods. These included scanning electron microscopy and energy dispersive spectrometry with corresponding elemental maps of the wear tracks, in conjunction with cross-sectional transmission electron microscopy of samples prepared by focused ion beam machining to assess subsurface and through-thickness changes in microstructure, all as a function of applied load and sliding time. Heavily dislocated layered microstructures were observed below the wear tracks to vary with both the load and sliding time. During the accumulation of fretting cycles, the subsurface microstructure evolved into stable dislocation cells with cell walls aligned parallel to the surface and the sliding direction. The thickness of the damaged subsurface region increased with the load, consistent with the depth distribution of the maximum shear stress. The primary surface oxide evolved as Fe2O3 and Fe3O4 with increasing sliding time, leading to the formation of a uniform oxide scale at the sliding surface. It is possible that the development of the dislocation cell structure in the subsurface also enhanced oxidation by pipe diffusion along dislocation cores. The results of this study reveal complex phase changes affecting the wear resistance of steels undergoing fretting wear, which involve a synergy between oxidative wear, crack initiation, and crack growth along dislocation cell walls due to the high strains accumulating under high loads and/or prolonged surface sliding.

Funder

Siemens

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact and tangential composite fretting wear of Zr-4 alloy tubes under random loading conditions;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2024-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3