Author:
Zhao Fei,Zhu Rong,Wang Wenrui
Abstract
Herein, a supersonic combustion coherent jet is proposed based on current coherent jet technology to improve the impact capacity of a coherent jet and increase the stirring intensity of the electric arc furnace (EAF) bath. Further, numerical simulations and an experimental analysis are combined to study the supersonic combustion coherent jet characteristics, including the Mach number, dynamic pressure, static temperature, vorticity, and turbulence intensity, in the EAF steelmaking environment. The results show that the supersonic combustion coherent jet exhibits stable combustion in a high-temperature EAF steelmaking environment. The supersonic combustion flame generated by the supersonic shrouding fuel gas can envelop the main oxygen jet more effectively than current coherent jets. Furthermore, the velocity attenuation, vorticity, and turbulence intensity performances of the supersonic combustion coherent jet are better when compared with those of the current coherent jet. The velocity core length of the main oxygen jet for the supersonic combustion coherent jet is 30% longer than that of the current coherent jet, resulting in an improved impact capacity and stirring intensity of the molten bath.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献