Numerical Modelling of the Influence of Argon Flow Rate and Slag Layer Height on Open-Eye Formation in a 150 Ton Steelmaking Ladle

Author:

Ramasetti ,Visuri ,Sulasalmi ,Fabritius ,Savolainen ,Li

Abstract

A transient computational fluid dynamics (CFD) modelling approach was used to study the complex multi-phase flow in an argon-stirred industrial scale ladle with a nominal capacity of 150 tons. During the stirring process, when gas was injected through the porous plug from the bottom into the steel bath, it breaks up into bubbles and infringes the slag layer creating an open-eye. The volume of fluid model was used to investigate the open-eye formation process in the simulations. In the numerical simulations, the open-eye area changed from 0.7 to 2.24 m2 with the increment of argon flow rate from 200 to 500 NL/min for slag layer thickness of 40 cm. Furthermore, the influence of slag layer height on the open-eye area was investigated. An argon flow rate of 200 NL/min was able to break the slag layer for slag layer height of 40 cm, and the open-eye formation was not possible for the same flow rate when the slag layer height was elevated from 40 to 55 cm. The numerical simulation results were validated against industrial measurements carried out at Outokumpu Stainless located in Tornio, Finland. The numerical simulation results of dynamics and time-averages of the slag area showed a good agreement when compared to the industrial measurements. To conclude, it is necessary to define gas flow rate based on the slag layer height to have an open-eye suitable for alloying.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3