Quantitative Phosphoproteomic Analysis Provides Insights into the Sodium Bicarbonate Responsiveness of Glycine max

Author:

Li Qiang12ORCID,Li Minglong2,Ma Huiying2,Xue Man2,Chen Tong2,Ding Xiaodong12,Zhang Shuzhen1,Xiao Jialei12

Affiliation:

1. Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China

2. Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China

Abstract

Sodium bicarbonate stress caused by NaHCO3 is one of the most severe abiotic stresses affecting agricultural production worldwide. However, little attention has been given to the molecular mechanisms underlying plant responses to sodium bicarbonate stress. To understand phosphorylation events in signaling pathways triggered by sodium bicarbonate stress, TMT-labeling-based quantitative phosphoproteomic analyses were performed on soybean leaf and root tissues under 50 mM NaHCO3 treatment. In the present study, a total of 7856 phosphopeptides were identified from cultivated soybeans (Glycine max L. Merr.), representing 3468 phosphoprotein groups, in which 2427 phosphoprotein groups were newly identified. These phosphoprotein groups contained 6326 unique high-probability phosphosites (UHPs), of which 77.2% were newly identified, increasing the current soybean phosphosite database size by 43.4%. Among the phosphopeptides found in this study, we determined 67 phosphopeptides (representing 63 phosphoprotein groups) from leaf tissue and 554 phosphopeptides (representing 487 phosphoprotein groups) from root tissue that showed significant changes in phosphorylation levels under sodium bicarbonate stress (fold change >1.2 or <0.83, respectively; p < 0.05). Localization prediction showed that most phosphoproteins localized in the nucleus for both leaf and root tissues. GO and KEGG enrichment analyses showed quite different enriched functional terms between leaf and root tissues, and more pathways were enriched in the root tissue than in the leaf tissue. Moreover, a total of 53 different protein kinases and 7 protein phosphatases were identified from the differentially expressed phosphoproteins (DEPs). A protein kinase/phosphatase interactor analysis showed that the interacting proteins were mainly involved in/with transporters/membrane trafficking, transcriptional level regulation, protein level regulation, signaling/stress response, and miscellaneous functions. The results presented in this study reveal insights into the function of post-translational modification in plant responses to sodium bicarbonate stress.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Funding for the Opening Project of Key Laboratory of Soybean Biology of Chinese Education Ministry

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3