Manufacturing a TiO2-Based Semiconductor Film with Nanofluid Pool Boiling and Sintering Processes toward Solar-Cell Applications

Author:

Vafaei Saeid,Holmes Ian,Errion Benjamin,Thukka Zigmey,Narita Ryoki,Sugiura Takashi,Manseki KazuhiroORCID

Abstract

For the first time, nanofluid boiling was applied as a process for the creation of a semiconductor TiO2 nanoparticle film that can be deposited onto a conductive substrate (F-doped SnO2 glass: FTO). A steel-base device designed for pool boiling was used to deposit a TiO2-based nanofluid consisting of nanoparticles with an average size of about 20 nm. The boiling of the nanofluid directly on the FTO glass substrate allowed for the deposition of the nanoparticles onto the FTO surface. In principle, the surface responsible for transferring heat to the fluid can be covered with these nanoparticles when the nanofluid boils. Using the as-deposited films, crystal growth of the TiO2 nanoparticle was controlled by varying the strategies of the post-sintering profile. The maximum temperatures, periods, and ramping rates for the obtained samples were systematically changed. Scanning electron microscopy (SEM) revealed that a densely packed TiO2-nanoparticle layer was obtained for the as-deposited substrate via pool boiling. For the maximum temperature at 550 °C, the TiO2 grain sizes became larger (~50 nm) and more round-shaped TiO2 nanostructures were identified. Notably, we have demonstrated for the first time how the sintering of TiO2 nanoparticles proceeds for the nanoporous TiO2 films using high-resolution transmission electron microscopy (TEM) measurements. We found that the TiO2 nanoparticles fused with each other and crystal growth occurred through neighboring 2–4 nanoparticles for the 550 °C sample, which was proved by the TEM analysis that continuous lattice fringes corresponding to the (101) anatase phase were clearly observed through the entire area of some nanoparticles aligned horizontally. In addition, the loss of the TiO2 nanofluid (precursor solution) was completely avoided in our TiO2 deposition. Unlike the commonly used spin-coating method, nanofluid pool boiling would provide an alternative cost-effective approach to manufacture semiconductor layers for various applications, such as solar cells.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3