Simultaneous Li-Doping and Formation of SnO2-Based Composites with TiO2: Applications for Perovskite Solar Cells

Author:

Hattori Nagisa1,Manseki Kazuhiro1,Hibi Yuto1,Nagaya Naohide1,Yoshida Norimitsu1,Sugiura Takashi1,Vafaei Saeid2

Affiliation:

1. Graduate School of Natural Science and Technology, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan

2. Mechanical Engineering Department, Bradley University, 1501 West Bradley Avenue, Peoria, IL 61625, USA

Abstract

Tin oxide (SnO2) has been recognized as one of the beneficial components in the electron transport layer (ETL) of lead–halide perovskite solar cells (PSCs) due to its high electron mobility. The SnO2-based thin film serves for electron extraction and transport in the device, induced by light absorption at the perovskite layer. The focus of this paper is on the heat treatment of a nanoaggregate layer of single-nanometer-scale SnO2 particles in combination with another metal-dopant precursor to develop a new process for ETL in PSCs. The combined precursor solution of Li chloride and titanium(IV) isopropoxide (TTIP) was deposited onto the SnO2 layer. We varied the heat treatment conditions of the spin-coated films comprising double layers, i.e., an Li/TTIP precursor layer and SnO2 nanoparticle layer, to understand the effects of nanoparticle interconnection via sintering and the mixing ratio of the Li-dopant on the photovoltaic performance. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) measurements of the sintered nanoparticles suggested that an Li-doped solid solution of SnO2 with a small amount of TiO2 nanoparticles formed via heating. Interestingly, the bandgap of the Li-doped ETL samples was estimated to be 3.45 eV, indicating a narrower bandgap as compared to that of pure SnO2. This observation also supported the formation of an SnO2/TiO2 solid solution in the ETL. The utilization of such a nanoparticulate SnO2 film in combination with an Li/TTIP precursor could offer a new approach as an alternative to conventional SnO2 electron transport layers for optimizing the performance of lead–halide perovskite solar cells.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3