Abstract
Microorganism-cell-based biohybrid materials have attracted considerable attention over the last several decades. They are applied in a broad spectrum of areas, such as nanotechnologies, environmental biotechnology, biomedicine, synthetic chemistry, and bioelectronics. Sol-gel technology allows us to obtain a wide range of high-purity materials from nanopowders to thin-film coatings with high efficiency and low cost, which makes it one of the preferred techniques for creating organic-inorganic matrices for biocomponent immobilization. This review focuses on the synthesis and application of hybrid sol-gel materials obtained by encapsulation of microorganism cells in an inorganic matrix based on silicon, aluminum, and transition metals. The type of immobilized cells, precursors used, types of nanomaterials obtained, and their practical applications were analyzed in detail. In addition, techniques for increasing the microorganism effective time of functioning and the possibility of using sol-gel hybrid materials in catalysis are discussed.
Funder
Ministry of science and higher education of the Russian Federation
Subject
General Materials Science,General Chemical Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献