The pivotal role of the polyethylene glycol amount as compatibilizing on the morphological features of silica-based blends

Author:

Catauro Michelina1,Raimondo Marialuigia2ORCID,Vertuccio Luigi1,Guadagno Liberata2,D’Angelo Antonio1

Affiliation:

1. Department of Engineering, University of Campania “Luigi Vanvitelli”, Aversa, Italy

2. Department of Industrial Engineering, University of Salerno, Fisciano, Italy

Abstract

Silica-based hybrid blends at different molecular or nanometer scale have gained a lot of interests from the technological point of view. In particular, several inorganic-organic hybrids find application in the biomedical field. In this context, inorganic SiO2 and hybrids made up of SiO2 and polyethylene glycol (PEG) have been synthesised via the sol-gel route and characterised from the morphological (throught the Atomic Force Microscopy - AFM) and spectroscopic point of view to shed light on their features as possible hybrid biomaterials. AFM investigation allowed for an effective quantitative evaluation of surface roughness of bioactive sol-gel-based materials. The results revealed an increase in material porosity as a function of the PEG amount in the systems, thus highlighting the pivotal role of the PEG amount as compatibilizing on the morphological features of silica-based blends. The co-presence of both the inorganic and organic phases was confirmed by the Fourier-transform infrared spectroscopy (FT-IR). Moreover, the influence of PEG was also investigated by analysing the deconvoluted FT-IR spectra in the range of 1600-750 cm−1.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3