Electrospinning of Poly (Acrylamide), Poly (Acrylic Acid) and Poly (Vinyl Alcohol) Nanofibers: Characterization and Optimization Study on the Effect of Different Parameters on Mean Diameter Using Taguchi Design of Experiment Method

Author:

Sorkhabi Tannaz SoltanolzakerinORCID,Samberan Mehrab FallahiORCID,Ostrowski Krzysztof AdamORCID,Zajdel PaulinaORCID,Stempkowska AgataORCID,Gawenda TomaszORCID

Abstract

In this study, nanofibers of poly (acrylic acid) (PAAc), polyacrylamide (PAAm) and poly (vinyl alcohol) (PVOH) were prepared using the electrospinning technique. Based on the Taguchi DOE (design of experiment) method, the effects of electrospinning parameters, i.e., needle tip to collector distance, polymer solution concentration, applied voltage, polymer solution feed rate and polymer type, on the diameter and morphology of polymer nanofibers were evaluated. Analyses of the experiments for the diameters of the polymer nanofibers showed that the type of polymer was the most significant factor. The optimal combination to obtain the smallest diameters with minimum deviations for electrospun polymer nanofibers was also determined. For this purpose, the appropriate factor levels were determined as follows: polymer PAAm, applied voltage 10 kV, delivery rate 0.1 mL/h, needle tip to collector distance 10 cm, and polymer solution concentration 8%, to obtain the thinnest nanofibers. This combination was further validated by conducting a confirmation experiment, and the average diameter of the polymer nanofibers was found to be close to the optimal conditions estimated by the Taguchi DOE method.

Publisher

MDPI AG

Subject

General Materials Science

Reference45 articles.

1. Electrospinning jets and polymer nanofibers

2. Recent Advances in 1D Electrospun Nanocatalysts for Electrochemical Water Splitting

3. Electrospinning for tissue engineering applications

4. Core-Sheath Electrospinning of Shea Butter and Cellulose Acetate to Enhance Heat Transfer in Protective Clothing https://www.researchsquare.com/article/rs-978565/v1

5. Structural and electro-optical properties of electrospun Cu-Doped ZnO thin films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3