Interaction Mechanism between Antibiotics and Humic Acid by UV-Vis Spectrometry

Author:

Yuan Xiaoyu,Yang Shengke,Fang Jie,Wang Xueli,Ma Haizhen,Wang Zongzhou,Wang RunzeORCID,Zhao Yaqian

Abstract

In this study, the interaction between the humus and two antibiotics was studied by UV-Vis spectroscopy to describe the interaction mechanism and the effects of different environmental factors on the mechanism. Results showed that humic acid (HA) containing more aromatic groups was easily associated with antibiotics. In the HA-OTC, with the increase of the concentration of OTC, there were obvious absorption peaks in the 230–260 nm and 330–360 nm range, and the absorption band of the HA ultraviolet spectrum underwent a slight blue shift and the absorption intensity increased, demonstrating that a new ground state complex was generated. In the HA-SD, with the increase of SD concentration, an aromatic structure absorption peak appeared in the 190–220 nm range, and the peak value increased and the absorption band underwent a red shift, and the aromatization of HA decreased, which enhanced the interaction between the antibiotics and HA. With the increase of pH, the absorption band of HA, HA-OTC and HA-SD ultraviolet spectrum suffered a blue shift, the degree of polymerization of HA molecules decreased, and the number of adsorption binding sites increased, which resulted in the interaction of HA with antibiotics being enhanced. The absorption band of HA, HA-OTC and HA-SD displayed a red shift with the increase of ionic strength, which indicated that the repulsion within HA particles was weakened, and the molecular polymerization was strengthened and therefore, the interaction between antibiotics and HA was inhibited. The UV characteristics of the HA, HA-OTC and HA-SD systems were insensitive to the temperature. This study lays the foundation for better studying the effect of humus on the distribution of antibiotic residues in the environment.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3