Variation Trends of Fine Particulate Matter Concentration in Wuhan City from 2013 to 2017

Author:

Liu Daoru,Deng Qinli,Zhou Zeng,Lin YaolinORCID,Tao Junwei

Abstract

Fine particulate matter (PM2.5) is directly associated with smog and has become the primary factor that threatens air quality in China. In order to investigate the variation patterns of PM2.5 concentrations in various regions of Wuhan city across different time spans, we analyzed continuous monitoring data from six monitoring sites in Wuhan city from 2013 to 2017. The results showed that the PM2.5 concentration from the various monitoring sites in the five-year period showed a decreasing trend. January, October, and December are the three months with relatively high mean monthly PM2.5 concentrations in the year, while June, July, and August are the three months with relatively low mean monthly PM2.5 concentrations in the year. The number of days with a daily mean concentration of 35–75 μg/m3 was the highest, while the number of days with a daily mean concentration of more than 250 μg/m3 was the lowest. PM2.5 accounted for a large proportion of the major pollutants and is the main source of air pollution in Wuhan city, with an average proportion of over 46%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference40 articles.

1. A Review of Recent Advances in Research on PM2.5 in China

2. Modeling study on atmospheric environmental capacity of major pollutants constrained by PM2.5 compliance of Chinese cities;Xue;China Environ. Sci.,2014

3. Atmospheric Particulates and Ionic Pollutants Study at Wu-Chi, Central Taiwan

4. Analysis of PM2.5 concentration and meteorological conditions in haze weather of Xi’an city;Han;Environ. Pollut. Control,2014

5. Comparison Analysis of Variation Characteristics of SO2, NOX, O3 and PM2.5 Between Rural and Urban Areas, Beijing;Liu;Environ. Sci.,2008

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3