Attention Horizon as a Predictor for the Fuel Consumption Rate of Drivers

Author:

Sarmadi HamidORCID,Nowaczyk SławomirORCID,Prytz Rune,Simão MiguelORCID

Abstract

Understanding the operation of complex assets such heavy-duty vehicles is essential for improving the efficiency, sustainability, and safety of future industry. Specifically, reducing energy consumption of transportation is crucially important for fleet operators, due to the impact it has on decreasing energy costs and lowering greenhouse gas emissions. Drivers have a high influence on fuel usage. However, reliably estimating driver performance is challenging. This is a key component of many eco-driving tools used to train drivers. Some key aspects of good, or efficient, drivers include being more aware of the surroundings, adapting to the road situations, and anticipating likely developments of the traffic conditions. With the development of IoT technologies and possibility of collecting high-precision and high-frequency data, even such vague concepts can be qualitatively measured, or at least approximated. In this paper, we demonstrate how the driver’s degree of attention to the road can be automatically extracted from onboard sensor data. More specifically, our main contribution is introduction of a new metric, called attention horizon (AH); it can, fully automatically and based on readily-available IoT data, capture, differentiate, and evaluate a driver’s behavior as the vehicle approaches a red traffic light. We suggest that our measure encapsulates complex concepts such as driver’s “awareness” and “carefulness” in itself. This metric is extracted from the pedal positions in a 150 m trajectory just before stopping. We demonstrate that this metric is correlated with normalized fuel consumption rate (FCR) in the long term, making it a suitable tool for ranking and evaluating drivers. For example, over weekly periods we found a negative median correlation between AH and FCR with the absolute value of 0.156; while using monthly data, the value was 0.402.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3