Parametric Analysis and Optimization Design of the Twin-Volute for a New Type of Dishwasher Pump

Author:

Sun Haichao1,Xu Hui2,Li Yanjun1ORCID,Wang Xikun1ORCID,Li Yalin1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China

2. Ningbo FOTILE Kitchen Ware Co., Ltd., Ningbo 315336, China

Abstract

To improve the hydraulic performance of a new type of dishwasher pump and solve the multi-parameter optimization problem, a genetic algorithm was introduced to optimize the special design of the twin-volute structure. Six curvature radii of the twin-volute structure were defined as the optimization parameters, and 100 groups of design samples were generated based on the Latin hypercube sampling (LHS) method. The pump head and the efficiency were taken as the optimization objectives, i.e., to improve the efficiency as much as possible while ensuring that the head would not be lower than 2 m. The important parameters were identified via sensitivity analysis, and the optimization problem was solved in detail by using the multi-objective genetic algorithm (MOGA). The results showed that the external profile of the first to the fourth section of the twin-volute structure had the most significant effect on the pump head and efficiency. The response surface method (RSM) was used to select the intervals of optimization, and a comparative simulation of the pump schemes before and after optimization was performed. The head curve did not significantly change before and after optimization. By contrast, the efficiency of the dishwasher pump significantly increased, showing an increase of 2.7% under the design point. Compared with the original model, the impeller of the optimal model pump had a lower overall distribution of turbulent kinetic energy, reduced the vorticity in the twin-volute inlet area, and increased the pressure in the flow channel. Our research results confirm that the combination of RSM and MOGA can effectively solve the problem of optimization for new types of dishwashers and can provide a reference for the development of subsequent hydraulic models.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Project Funded by China Postdoctoral Science Foundation

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3