Abstract
A comprehensive energy and exergoeconomic analysis of a novel transcritical refrigeration cycle (NTRC) is presented. A second ejector is introduced into the conventional refrigeration system for the utilization of the gas-cooler waste heat. The thermodynamic properties of the working fluid are estimated by the database of REFPROP 9, and a FORTRAN program is used to solve the system governing equations. Exergy, energy, and exergoeconomic analyses of the two cycles are carried out to predict the exergetic destruction rate and efficiency of the systems. The optimum gas cooler working pressure will be determined for both cycles. A comprehensive comparison is made between the obtained results of the conventional and the new cycles. An enhancement of approximately 30% in the coefficient of performance (COP) of the new cycle was found in comparison to the value of the conventional cycle. In addition, the results of the analysis indicated a reduction in the overall exergy destruction rate and the total cost of the final product by 22.25% and 6%, respectively. The final product cost of the proposed NTRC was found to be 6% less than that of the conventional ejector refrigeration cycle (CERC), whereas the optimum value of the gas cooler pressure was 10.8 MPa, and 11.4 MPa for the NTRC and CERC, respectively.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献