Abstract
The purpose of this research is to evaluate a transcritical heat-driven compression refrigeration machine with CO2 as the working fluid from thermodynamic and economic viewpoints. Particular attention was paid to air-conditioning applications under hot climatic conditions. The system was simulated by Aspen HYSYS® (AspenTech, Bedford, MA, USA) and optimized by automation based on a genetic algorithm for achieving the highest exergetic efficiency. In the case of producing only refrigeration, the scenario with the ambient temperature of 35 °C and the evaporation temperature of 5 °C showed the best performance with 4.7% exergetic efficiency, while the exergetic efficiency can be improved to 22% by operating the system at the ambient temperature of 45 °C and the evaporation temperature of 5 °C if the available heating capacity within the gas cooler is utilized (cogeneration operation conditions). Besides, an economic analysis based on the total revenue requirement method was given in detail.
Subject
General Physics and Astronomy
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献