Thermodynamic analysis of drying cycles utilizing a desiccant wheel thermoelectric modules and heat pipe for the drying of hazel nuts in the East Blacksea climatic conditions

Author:

Saraç BetülORCID,Demirtaş Cevdet,Ayhan Teoman

Abstract

AbstractThe use of renewable energy sources to maintain appropriate thermal humidity and temperature conditions in food drying technologies, especially in humid climate zones, is a current area of research. In the Eastern Black Sea Region, the high relative and specific humidity of the atmospheric air lead to a low drying rate of the products. Therefore, in this study, to enhance the drying rate of the products, three models and their psychometric cycles were studied on decreasing the specific humidity of the drying air and increasing the moisture saturation degree of the drying air. The innovative hazelnut drying models proposed for the climatic conditions of the Eastern Black Sea region incorporate several components, including thermoelectric modules (TEM), photovoltaic thermal (PV/T) systems, desiccant wheels (DW), heat pipes (HP) and heat exchangers (HX). The thermodynamic analysis was conducted on the theoretical cycles belonging proposed models. Emphasis was given to the development of Model-C, taking into account the drying conditions specific to hazelnuts in the Eastern Black Sea region, among the cycles named Model-A, Model-B and Model-C. The energy efficiencies and SEMER values of Model-A, Model-B and Model-C were presented based on selected atmospheric conditions. Each model is valid under its characteristic operating conditions, and the energy efficiencies, SEMER values and the exergetic efficiencies for Model-A, Model-B and Model-C were determined as (4.66%-0.271 kg-H2O kWh1–62%), (9.87%-0.1542 kg-H2O kWh1–22%) and (9.13%-0.1381 kg-H2O kWh1–10%), respectively. Also, presented models of hazelnut drying supported by renewable energy have achieved high sustainable index (SI) values. Consequently, these models ensure the sustainability of energy in the drying sector and facilitate the assessment of their environmental, economic and social impacts. The utilization of renewable energy in the models will lead to a reduction in CO2 emissions during the drying process. These results indicate that TEM systems are a viable option for food drying in the future.

Funder

Karadeniz Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3