BattleSound: A Game Sound Benchmark for the Sound-Specific Feedback Generation in a Battle Game

Author:

Shin SunghoORCID,Lee SeongjuORCID,Jun ChanghyunORCID,Lee KyoobinORCID

Abstract

A haptic sensor coupled to a gamepad or headset is frequently used to enhance the sense of immersion for game players. However, providing haptic feedback for appropriate sound effects involves specialized audio engineering techniques to identify target sounds that vary according to the game. We propose a deep learning-based method for sound event detection (SED) to determine the optimal timing of haptic feedback in extremely noisy environments. To accomplish this, we introduce the BattleSound dataset, which contains a large volume of game sound recordings of game effects and other distracting sounds, including voice chats from a PlayerUnknown’s Battlegrounds (PUBG) game. Given the highly noisy and distracting nature of war-game environments, we set the annotation interval to 0.5 s, which is significantly shorter than the existing benchmarks for SED, to increase the likelihood that the annotated label contains sound from a single source. As a baseline, we adopt mobile-sized deep learning models to perform two tasks: weapon sound event detection (WSED) and voice chat activity detection (VCAD). The accuracy of the models trained on BattleSound was greater than 90% for both tasks; thus, BattleSound enables real-time game sound recognition in noisy environments via deep learning. In addition, we demonstrated that performance degraded significantly when the annotation interval was greater than 0.5 s, indicating that the BattleSound with short annotation intervals is advantageous for SED applications that demand real-time inferences.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Use of auditory event-related potentials to measure immersion during a computer game;Burns;Int. J. Hum. Comput. Stud.,2015

2. Stach, T., and Graham, T.C.N. (2011, January 5–9). Exploring Haptic Feedback in Exergames. Proceedings of the 13th IFIP TC 13 International Conference on Human-Computer Interaction—Volume Part II, Lisbon, Portugal. INTERACT’11.

3. A comparison of the effects of haptic and visual feedback on presence in virtual reality;Gibbs;Int. J. Hum.-Comput. Stud.,2022

4. Game audio—An investigation into the effect of audio on player immersion;Gallacher;Comput. Games J.,2013

5. A statistical model-based voice activity detection;Sohn;IEEE Signal Process. Lett.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3