Improved Performance of Fundamental Mode Orthogonal Fluxgate Using a Micro-Patterned Meander-Shaped Ribbon Core

Author:

Zhi ,Feng ,Lei

Abstract

In this paper, the performance of orthogonal fluxgate sensors with meander-shaped cores is studied in fundamental mode. The meander-shaped cores are made by micro-patterning technology based on a Co-based amorphous ribbon. The main advantage of this structure is that the linear operating range of the sensor can be adjusted simply by changing the number of strips, without affecting the excitation mechanism. Experiments show that a linear range of 560 μT is obtained by a meander-shaped core sensor with 12 strips. The changes in the number of strips can also increase sensitivity and reduce noise of the sensor. We can achieve a sensitivity of 600 V/T and a noise level of 0.64 nT/√Hz at 1 Hz for a meander-shaped core sensor with eight strips. Compared with the performance of the sensors built using a single strip core having the same equivalent cross-sectional area, the use of meander-shaped core can provide a higher sensitivity and linearity, and a lower noise level. We also compare the performance of an eight-strip meander-shaped core orthogonal fluxgate operated in the fundamental and second-harmonic modes. Similar sensitivity for the two modes can be obtained by adjusting the excitation current. In this case, we find that the noise of sensor operating in fundamental mode is about five times lower than that of the sensor operating in second-harmonic mode. This can be interpreted as the suppression of Barkhausen noise by unipolar bias in the fundamental mode.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3