Design of Integrated Micro-Fluxgate Magnetic Sensors: Advantages and Challenges of Numerical Analyses

Author:

Marconato NicolòORCID

Abstract

Miniaturization and on-chip integration are major lines of research in many branches of science and technology developments, undoubtedly in sensor technology. Fluxgate magnetometers are very sensitive, and accurate magnetic sensors able to detect weak fields both AC and DC, which in recent years saw a great effort in minimizing their dimensions, weight, and power consumption. The physics behind the fluxgate principle is rather complex and makes simulations difficult and only partially used in the literature. The limited physical access to micro sensors for measurements and the need to optimize the entire integrated system, including the sensor geometry and the excitation and readout circuits, make numerical analyses particularly useful in the design of miniaturized sensors. After a thorough review of the miniaturized solutions proposed so far, the present paper examines in detail the possibility of adopting a model based approach for designing miniaturized fluxgate sensors. The model of the fluxgate effect of two different technologies proposed in the literature has been implemented to benchmark simulation results with real data. In addition to the advantages for an optimized design, the implementation and computational challenges of the numerical analyses are precisely outlined.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference61 articles.

1. The fluxgate magnetometer

2. Review of fluxgate sensors

3. Sensors: A Comprehensive Survey. Volume 5, Magnetic Sensors;Bol,2008

4. Modern magnetic field sensors—A review;Tumanski;Prz. Elektrotechniczny,2013

5. Advances in fluxgate sensors

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3